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SIMPLE WAVE EQUATIONS OF ONE-DIMENSIONAL MOTION
OF A GAS -~ DUST MIXTURE

V. V. Zholobov and L, G, Zholobova UDC 532.529

§1. The equations of one-dimensional nonstationary motion of a gas—dust mixture [1] can be written in -
the following form:

9 —
B Ul—'-gg—ul-—o, (1.1)

a . [ [ d [}
Ngrtet (e —w) v —tagy uz“O 57l + g P = —ifny
[/}
Vi Yo+ (U — u’l) g U = VaU1f1a,

[/j , @
Uiy P+ vavl=(?—-1)vl_f12(u1——u2)—-(51(T1—Tg),
a
Ul'gt‘Tz’i‘(uz— )'— ﬁzv1(T1—T2)v
v dE = dx — u,dt,

where uj, vi, and Tj are the velocities, specific volumes, and temperatures of the phases (the subscript 1 re-
fers to the parameters of the gas); p is the pressure; fj, is the volumetric force due to the interaction between
the gas and the particles as a result of frictional forces; and vy is the ratio of the specific heat capacities of the
gas. The coefficients R have the form

= o o = u
pl Pzdvg ’ ﬁ2 Pzdcg » 1

where pg is the true density of the second phase, d is the diameter of the particles; 7\1 isthe thermal conduc-
tivity; and Nu is the Nusselt number, The terms reflecting the force interaction and thermal interaction be-
tween the phases are expressed in concrete form as follows [2]:

Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Ne. 3, pp. 54-61, May-
June, 1978. Original article submitted February 1, 1977.
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Nu = 2+ 0.6 Re/2 Pr'/3,  Pr= ¢ypu /My,

— d (uy — uo) L g — uy |
Re = [y — uy| — __d_ 1 2) | Uy p)
_‘"'”—"lvl‘ L f 12 4 d pg vovy ’

where ¢, 14, and cg are the specific heat capacity at constant pressure, the dynamic viscosity of the gas, and
the coefficient of head resistance of spherical particles., Hereafter we shall use the following relation between
¢gq and the Reynolds criterion, as given in [3]:

ca= Ho (1 4 0.197 Re®63 - 2.6. 10~4 Re! %),

The system (1.1) is closed by the relations
pvy = RTy, 03 = const, w, = p}(Ty/T%)™,
where m is a constant which depends on the nature of the gas.
In the system (1.1) we pass to dimensionless quantities in accordance with the formulas
& = Wil p* = p/vp’s vi =vif, W = uy/a, (1.2)
T5 = T/T° 1* = a%/1°, a* = a/a® fi, =(1%a) f,,,
a% = yp%i, B1 = BI%yRa’, By = I%By/a®,
where the superscript 0 indicates the initial parameters of the mixture; I° is the characteristic dimension,

The form of the system (1.1) does not change, and hereafter we shall omit the asterisk,

Assuming that all the desired functions depend on one level function [4], and using the velocity of the gas
as this level function, from the first and next-to-the-last equations of the system (1.1) we find

_f_u = 0= 1) fravy (g — up) — By (T — T) (1.3)
at 1 dp . dn ’
R21 duy +Yrg, du,
Ouy  dvy Ouy
9% T duy ot

Equating the mixed derivatives, after some simple transformations we obtain the integrability condition
for (1.3) in the form

dvy/du; = § = const. 1.4)

Substituting (1.3) into the remaining equations of the system (1.1), we obtain the following system of ordinary
differential equations:

dv,y d d d d
Vg it — 1) dZ’l dl:fl D2 dZ: d:; = 0; (1,5)
du d d
v 0 g [y — ) o 4 va | = 0 (1.6)
du, Vaf1p 8T,
duy ﬁz (T — Tz)dul (1.7)
dp dvy T,—T
[v, ——d'};i - YP lel ] Bovs (7, fi)’h = {(y — 1) fro (uy — wa) vy —
[ T (g — uy) au, J w.8)
de .
Bui(Ty — To)} 52
It can be seen that the system (1.4)-(1.8) has the mtegrals
vy =B+ Cyy v = Ca (St + Oy P = Cy— s + ) (1.9)

where Cy, Cy, and Cy are arbitrary constants, Taking account of (1.9), we can reduce the system (1.4)-(1.8) to
two ordinary differential equations of first order:

d”z = 7/2f12 dTZ
Tduy, T B (T, —Tp) duy’ (1.10)

ar, ('SYP —'-é— ”1') (T —T3) Bovy (T — Ty)
duy — BuyCp) et [(v— D (g — ug) + v1/0vy] — By (T'y — T}




The level function is determined from (1,3), taking account of (1.4):

4o (nt e,
1 1

18t =
+ 88 tj‘(‘\’— 1) Frovn (g — up) — By (T1 — Ty) +Ce (1.11)

Thus, the simple wave described the self-similar motion determined by the transfer group [5]. For
numerical calculations, it is preferable to use the variable u; instead of (t +6¢), since the range of integration
becomes finite,

§2. We shall make use of the resulting relations to describe the motion occurring in front of a piston
which moves according to a specified law into a mixture which is initially at rest, On the curve £ = — (15)t we
specify the following conditions:

Uy =0, uy=0,v, =1, vy=vs, Ty=1, To=1, p=1/y. 2.1)

We assume that the collision of the particles with the piston surface is absolutely inelastic and that the
particles hitting the piston surface form a layer in a dense-packed state (a film). Using this model of the in-
teraction between the particles and the piston surface leads to the following boundary conditions for the sur-
face of the layer:

E=0, 2 =2+ A, uy = uy -+ dA/dt,

where x and u, are the coordinate and velocity of the piston, respectively; A is the thickness of the layer (the
film), determined from the differential equation

S8 _m—u 4y 40 @.2)
T gl (A=0.1=0)

(¥ is the volumetric content of particles in the dense-packed state), The pressure in the film is distributed
according to the law
e * 0 2
Pr=p+ Ap —esps (6 — 2) g Uss

where Ap is the local increase in pressure, by which we mean the pressure exerted by a particle on the surface
of the layer upon collision [6], calculated according to the formula
Ap = N(uy — uy)¥v,.
Taking account of (2.1), we find from (1,9) that
Ci=1, C;=v3, Cy=1/7, C,=0. @.3)
From the conditions of kinematic consistency it follows that 6 = ~1.

Thus, the solution of Egs. (1.10) and (2.2) with the initial conditions uy{0) =0, To(0) =1, A{0) =0 and the re-
lations (1.9), (1.11), and (2.3) describe the flow of a gas—dust mixture occurring in front of a piston moving
according to the law

v (%) (v1 Zﬁ —-}—vp—LgZ )duf
1 1

) (2.4)
(¥ —1) Fravy (g — ug) — Py (T — T)

t =

Uy — U
U = uy + 25t
yP58,

into a mixture which is initially at rest,

We mark the parameters of the flow taking place in an equilibrium mixtaure in front of a piston moving
inward according to the law (2.4) with a subscript asterisk., The equilibrium flow of a dusty gas is deseribed
by the classical equations of gasdynamics, but v — the ratio of the specific heat capacities — is replaced by some
effective value
ep+ cg-/vg

Vs = cv+c’/vgv
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and the density is taken to mean the total density of the mixture [7]. Making use of a solution of the simple-
wave type [4], we can satisfy the boundary condition on the piston and the initial conditions (2,1) on the curve
£=th. As a result, we obtain

1 1,0, 20V = D) 2,
P*=—7'{ +v‘ *}? » 2.5)

vy { A }2/(1-—1’..)
1_'_ * H

P a{1 T V‘;iau*}‘"’*"'”"‘“"’*’ £ O (uy), @ = ‘/ Y(i+vz)

1’*”2

Uy =

The function ®(u,) is determined from (2.4) if we set t = &(u, ). In the case of a clean gas, in the choice
of the dimensionless quantities in the form (1.2), the solution of the fundamental system of equations satisfying
the boundary condition on the piston and the initial conditions (2.1) on the curve ¢ =t has the form

_ 29/(v—1) RN Y () 2.6)
P {1+ Tt o A

2
— v4-1)/(1—v
t—{1+ 1—~2——1u} = D).

Numerical calculations were carried out for A=0 and the following values of the thermodynamic param-
eters of the phases: cp=1047.5 J/kg - deg; c,=800 J/kg-deg; d = 107° m; Ay=0.05 J/m -sec* deg, pl=1,86-10"°N.
sec/m?; R=287.29 ¥/kg-deg; I°=1 m; T}=T)=300"K; p=10"% N/m?;y =1.4; m=0.5; and Vi) =2,

Figures 1 and 2 show the distributions of temperatures and pressures along the line of the piston, re-
spectively. Curvesl and2 will hereafter correspond to the parameters calculated by formulas (2.5) and (2.6),
curve 3 to the parameters of the gas, and curve 4 to the parameters of the particles. In the case under con-
sideration, formulas (2.5) yield an error of not more than 4% in the determination of the mixture temperature,
It should be noted that the solution (2.5), (2.6) is valid to the time when a shock wave is formed, i.e,, in the
region bounded by the straight lines £=0, £=t& (or £ =t) and the corresponding characteristic passing through
the point of formation of the shock wave.

§3. If there is no dynamic disequilibrium (uy =u,), the conditions (2.1) are given along the curve §=
]/ 1+ 4/v3¢. In this case we obtain the results known from [5]:

P=$+bu1, vy =1—buy, Uz=”g”i'

T=14+ 20, a=8loD po [ g =0

=2y =0 [y 1+1’(1+2a) _ ]
R TC o TR {1 exp [ —syFn Pt —bY)

In the limiting case cy= « (7, =1, T, =1), instead of (2.5) we have
o = (Uy) exp auy, v, = (1/6) exp (—au,),
t — at exp (—au,) = Ou,).
The distributions of the gas temperature and the pressure in this case are shown in Figs. 3 and 4,

If there is no thermal disequilibrium between the phases (T, =T,), then instead of the first equation of
(1.10) we have

duy _ ¥805Cs — ¥C,(u;+ uz/cz)—(“l‘f'cl/a)ai 3.1)
duy (V= 1) (g~ uy) + ; + Cy/8

Taking account of (2.1), we can write the solution of Eq. (3.1) as follows:

{v— [+ @2 —1)v3]ud]
BT e 0% -7+
PE =D 2+ D T Zrwe— (7— Dul __me+
Ty Toor T rEe—nd T et
(v— [“_’v—'”l_ |
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where w(,:-vg(y +1)/y. In this case, from (1.3}, (2.2), (1.11), and (2.4) we obtain the solution of the previously
formulated problem in quadratures. Figure 5 shows the graph of the coefficient of slippage of the phases, k=
112/111.

In the casie uy =0, instead of Egs. (1.6}, {1.7), we obtain a single equation:

dp dv,
1 + — e,
T (9 — 1) Frtvy — Bu(Ts — T3)) = —framy.
vldul + Ypdul

The solution of the previous problem reduces to the simultaneous integration of Eq. (2.2) and the equa-~

tions

ap . f . f12 4Ty
duy T Ty —To)Bg duy !
Ty _ Baltp - u— 1) (T —Ta) (1 — uy)
duy BTy —To) +~ (1 — uy) (1 — Vuylfye

with the initial conditions
p0) =1y, T,0)=1, A@0)=0.

§4. In a two-velocity and two-temperature medium, unlike a one-velocity one-temperature medium, we
observe a layering of characteristics and level curves, as is typical of equations with finite right sides, In
classical gasdynamics, and also for nonequilibrium flows [8], the point where the shock wave arises is the point
of intersection of the nearest characteristics of one family. The position of the first point of intersection on
the initial characteristic is determined by the parameters of the gas and the acceleration of the piston at the
initial instant of time. .The differential equation of the family of characteristics to which the initial charac~
teristic £ =— 5t belongs can be written in the form

deldt =14 + Vplwm@Vou@), z =&+ 6. 4.1)

If one of the relaxation processes is not present, the function on the right side of (4,1) satisfies the conditions
of Picard's theorem in the region 0 <t, 0=z=¢t, In this region, Fq. (4.1) has 2 unique solution, which ensures
that there will be no shock waves in the region of the flow,

Transition to an inertial system of coordinates, moving with respect to the laboratory system with
velocity U =—1/5, reduces the fundamental system of equations in the case of a simple wave to the stationary
form. This enables us to use the result of [9], where it is shown that for U= —~1 the corresponding flows
describe the motion of a mixture of the "continuous shock wave" type. Thus, the flows considered here con-
stitute an example of uninterrupted compression flows, the possibility of whose existence was shown in [8, 10],

The relations (1.9)-(1.11) are of special interest from the viewpoint of confirming numerical methods
for the calculation of nonstationary motions of an aerocolloid,
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INTERNAL WAVES GENERATED BY LOCAL DISTURBANCES
IN A LINEARLY STRATIFIED LIQUID OF FINITE DEPTH

I. V. Sturova UDC 532,593

51, In order to investigate the internal waves caused by the elongation of an axially symmetric body
moving horizontally at constant velocity U in a stratified liquid, we consider the stationary problem of the flow
of a uniform stream of heavy liquid of finite depth past apoint source and sink of equal magnitude m which are
situated below the free surface. The method of solving this problem is analogous to [1], in which we investi-
gated the case of an unbounded liquid.

The source and sink are situated at a depth h below the unperturbed free surface, y =0, of the horizontal
layer of liguid, — ©<x,z< o, —H =y=0, The line segment connecting the singularities is of length 2¢ and
parallel to the x axis, which coincidés with the direction of the velocity vector of the liquid far upstream, In
the unperturbed state the distribution of the liquid density has the form

Po() = polt — ag), —I <y <0, @ = const> 0. (1.1)

We assume that for sufficiently deep immersion and weak stratification, the flow past this combination of
source and sink is equivalent to the flow past a closed axially symmetric body (analogous to an unbounded
homogeneous liquid). The radius R of the midsection, the elongation d of the body, and the velocity U of the
fundamental stream uniquely determine the values of @ and m [1].

In the linear formulation, making use of the Boussinesq approximation, the equations of motion have the
form

duloz -+ 6v/dy + ow!oz = mid(z + a) — 8(z — a)18(y + R)6(z), 1.2)
o, Udu/oz - —aplaz, o,Udviox = —dpldy — gp, p,Udw!/dz = —dpdz,
Udplox ~ ap,w = 0
with the boundary conditions
v=0, y=0, y=—H, u, v, w, p, p—>0, 2* +2*—~ oo,

where u, v, w, p, and p are the perturbations of the components of the velocity vector in the directions of the
X, y, and z axes, the pressure, and the density which are caused by the presence of the singularities in the
originally unperturbed flow; g is the acceleration of gravity; and é is the Dirae delta function.

The free surface is repiaced by a rigid "1id®, since for sufficiently deep immersion the surface waves
are negligibly small and the internal waves, for weak stratification, cause practically no distortion in the shape
of the free surface [1, 2].”

The function 7 (x, y, 2), deterrhining the vertical deviation of a liquid particle from its unperturbed state,
satisfies the linearized condition 8nbx =v/U.

Introducing the dimensionless variables &, v, , 2, , by, Hy, n,, 2,)=(1/R)x, y, 2, h, H, 71, a), @, v,,
w,)=(/U), v, w), and m,= m/UR?, we reduce Eq. (1.2) to a single equation for the function v, (the subscript
asterlsk will be omitted from now on):

5m—zAu + SAgp = m—% 8y + 1) 2518 (2 + a) = 8 (z — a)] 8(),

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 61-69,
May-June, 1978, Original article submitted April 7, 1977.

330 0021-8944/78/1903-0330$07,50 ©1978 Plenum Publishing Cbrporation



